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o-Hydroxyalkylated nitrogen compounds often serve as a rich Scheme 1. Radical a-C—H Hydroxyalkylation of Nitrogen

source of biologically and synthetically important substarices, Compounds B
Therefore, novel chemical transformations that provide rapid access ;- EtsB, air ; '
to these functional motifs are of great significance in pharmaceutical RCHO ~ AR
: . g g p AN R,/\N/\r
and fine chemical research. ) rt. b L
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We have recently reported the radical hydroxyalkylation of ethers
and an acetal with aldehydes, which proceeded via hydrogen Taple 1. Hydroxyalkylation of 1-Methyl-2-pyrrolidinone (1)

abstraction from the €H bonda to oxygen by using EB/air2ad EtsB, ai
¥g i g o@ RSCHg" o[\\kl/“ O&“ OIN> /\rn HO R
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or EB/TBHP22¢ In this context, we became interested in the N 5 N
possibility of the direct-amino s C—H hydroxyalkylation that o Z"‘ " s p ;
would serve as a new mode for obtaininghydroxyalkylated threo erythro o

nitrogen compoundd? Our idea stemmed from the following
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insights. First, the relatively small dissociation energy of theHC N . ‘”:e YT e 5( 9 - -
bond adjacent to the nitrogen atomvould enable the selective ety ) (dr 3:4)
abstraction of ther-hydrogen with radical species generated from ; ‘;'h'\goniH“ 2a ig gg Eggfgg g 2@ 4”309
. L . :

EtsB/air. Secont_j, the re_sultant n_u_cleophmeamlnoalky_l radlcalé_ 3 34-methylenedioxyphengc 14 62(77:23) 6 8 no
would undergo irreversible addition to aldehydes with the aid of 4  2.BrGH, 2d 1% 54(42:58) 9 13 3
the oxophilic and Lewis acidic BB as an oxyradical scavenger. 5 CizHxs2e 2X 50(50:50) no no no

In this communication, we show that several tertiary amides, g i'megénzt ga 2; Zg Egggig ? 11 6

- . - - -Me 4 2a : no

ureas, and amines undergo _(_jlrect |ntermolecgla_1r addlt!on to 8  4-MeOGH, 2a 41 68(6931) 7 5 no
aldehydes under the {B/air conditions, thereby providing a unique
and simple means for the radical3sg—H transformation of aThe reaction was carried out using 1-methyl-2-pyrrolidinoble(85
nitrogen-containing molecules (Scheme?1). equiv relative to aldehyde) andsBt(6 equiv) with continuous air admission

S ) A il _ami s (ca. 30 mL/hmmol aldehyde)® Isolated yield based on aldehyder0 equiv
In our initial investigation of the feasibility ofi-amino C-H of 1 was used? 17 equiv ofl was used® 3 equiv of EtB was used| The

hydroxyalkylation, 1-methyl-2-pyrrolidinondYwas selected as the  yeaction was carried out under open-air conditiéri¥ot obtained.
substrate. Whep-lactam1 was subjected to the hydroxyalkylation
under the EfB/air conditions,N-CH, alkylation products3/4 and derivatives as 1,3-dimethyl-2-imidazolidinorg) énd 1,3-dimethyl-
N-CHs alkylation products were produced (Table 1). The regio- 3 4,5 6-tetrahydro-2@)-pyrimidinone Q) provided o-alkylated
selectivity of the reaction favorindl-CH, alkylation rather than compoundsl6 (75%) and17 (8%), and18 (72%) and19 (11%),
N-CHs; alkylation indicates that hydrogen abstraction occurs respectively (entries 1 and 2). 1-Methylpyrrolidindé0( and
predominantly from the weaker-H bond; compared to the less-  triethylamine (1) were also efficiently transformed into alkylation
substituted carbon center, the more highly substituted carbon centeproducts (entries 3 and 8)The hydroxyalkylation of N,N-
is susceptible to hydrogen abstraction due to the release of stericdiethylaniline (2), an aromatic tertiary amine, gave phenyl-
strain as well as the hyperconjugative stabilization of the incipient protecteg3-amino alcohoR3in 65% yield (dr 83:17). Interestingly,
o-aminoalkyl radical. The amounts of-@ substrate and BB the hydroxyalkylation of 4-methylmorpholind§) was found to
influenced the efficiency of the reaction (entries 6 and 7); when selectively take place at the positianto nitrogen; the regioselec-
the reaction was carried out with a relatively small amount,of tivity in this case indicates that the-& bond adjacent to nitrogen
the amounts of ethyl addu& and reduction byproduct were is more susceptible to hydrogen abstraction than that adjacent to
increased, and the reaction time was prolonged (entry 6). Thethe ethereal oxygen, although the-8 bondsa to nitrogen and
prolonged reaction time (42 h) was also necessary for obtaining aoxygen have similar dissociation energié#n general, undesirable
reasonable yield when 3 equiv of;Btwas used (entry 7). Although  side reactions, such as ethyl radical addition and aldehyde reduction,
the reaction proceeded under the open-air condition without air occurred only modestly in the above conditions (see Supporting
admission, it was significantly decelerated (entry 8); 41 h was Information). 3-Methyl-2-oxazolidinone18) and acyclic N,N-
required for completing the reaction under the open-air condition, dimethylacetamidelf) were found to be somewhat poor substrates
in contrast to 14 h for the continuous air-admission condition (ca. for the present hydroxyalkylation reaction (43 and 40% yields, en-
30 mL/rmmol aldehyde). tries 7 and 8). The reason for the low yield in the reactiofsis
These results prompted us to apply this radicaHransforma- unclear, whereas the inefficient conversioril&fmay be attributed
tion to various nitrogen compounds. Table 2 shows that, under the to thermochemical factors that retard the hydrogen abstraction at
Et;B/air conditions, tertiary ureas and amines were also hydroxy- the N-CHj sites, where radical stabilization is less available.
alkylated with 4-methoxybenzaldehyd2a] to afford alkylation One plausible mechanism of this reaction, which is analogous
products in good yields. Thus, the hydroxyalkylation of such urea to that proposed for ether hydroxyalkylatigitis shown in Scheme
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Table 2. Substrate Scope

nitrogen atom by using BB/air. The present €H transformation

4_M§éacB~:iFCHo features the direct generation afaminoalkyl radicals from the
Lo 2; ¢ A AT C—H substrates, which may potentially serve as an alternative to
o —Q Z/\orN the homolysis of &X (X = SR, SeR) bonds, the radical
_ translocation, and the single electron transfer (SET) processes. It
entry substrate® time (h) ~ product’ should be noted that this radical reaction enables the rapid
yield (dr: threo:erythro) . . . . .
- — — construction of contiguous stereocenters functionalized with het-
: \N_> ™ ’ ‘N3 eroatoms, which is not readily achieved by otherHC function-
1 ofl\,lq 10 o/\,lq Ar oél\N alization methods. Studies on the scope of this reaction are
CHs CHy OH Ar underway with focus on the application to evolutional organic
8 16, 75% (dr 62:38) on 17,8% synthesis.
H;C\N H;C\N H;C\ . . .
2 )\/j 16 )\/j\(m /j Acknowledgment. This work is dedicated to the memory of
© ZH © ZH L, Professor Satoru Masamune. We thank Mr. Atsushi Kishida and
0 18, 72% (dr 79:21) L 19, 11% Dr. Kazuhiko Takatori for X-ray crystallographic analysis.
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a C—H substrate (35 equiv) and 4Bt (6 equiv) were used except entry
8. Isolated yield based on aldehydeStereochemistry of major product
has yet to be determine#i70 equiv of15 was used.

Scheme 2. Plausible Mechanism of Radical C—H
Hydroxyalkylation of Nitrogen Compounds
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2. An ethyl radical generated fromgBtair abstracts the-hydrogen
of the nitrogen compound to produce nucleophdi@minoalkyl
radicals. Then, thex-aminoalkyl radicals irreversibly undergo
addition to aldehyde via two possible pathways that involve the
rapid capture of oxyradicals with $& (path a) and/or the
precoordination of aldehyde with & followed by the addition of
o-aminoalkyl radicals (path BY.

In conclusion, we have devised a new radical alkylation reaction
that occurs via the selective abstraction of the hydrogea the

Supporting Information Available: Experimental procedures,
characterization data, ari/**C NMR spectra of hydroxyalkylation
products. This material is available free of charge via the Internet at
http://pubs.acs.org.

References

(1) Reviews: (a) Lee, H.-S.; Kang, S. KBynlett2004 1673-1685. (b)
Bergmeier, S. CTetrahedron200Q 56, 2561-2576. (c) Ager, D. J,;
Prakash, I.; Schaad, D. &hem. Re. 1996 96, 835-875.

(2) (a) Yoshimitsu, T.; Tsunoda, M.; Nagaoka, @hem. Communl1999

1745-1746. (b) Yoshimitsu, T.; Arano, Y.; Nagaoka, B.Org. Chem.

2003 68, 625-627. (c) Yoshimitsu, T.; Makino, T.; Nagaoka, Bl.0rg.

Chem.2003 68, 7548-7550. (d) Yoshimitsu, T.; Arano, Y.; Nagaoka,

H. J. Org. Chem2005 70, 2342-2345.

Radicala-hydroxyalkylation of nitrogen compounds via SET processes:

(a) Cohen, S. G.; Parola, A.; Parsons, GGthem. Re. 1973 73, 141—

161. (b) Kim, S. S.; Mah, Y. J.; Kim, A. RTetrahedron Lett2001, 42,

8315-8317. (c) Brule, C.; Hoffmann, Nl etrahedron Lett2002 43, 69—

72. Via radical translocation: (d) Murakami, M.; Hayashi, M.; Ito,J.

Org. Chem1992 57, 794-796. (e) Booth, S. E.; Benneche, T.; Undheim,

K. Tetrahedron1995 51, 3665-3674.

Reviews ofa-deprotonative alkylation of amines: (a) Beak, P.; Basu,

A.; Gallagher, D. J.; Park, Y. S.; ThayumanavanA&. Chem. Re4996

29, 552-560. (b) Meyers, A. | Tetrahedron1992 48, 2589-2612. (c)

Kessar, S. V.; Singh, Chem. Re. 1997, 97, 721-737. (d) Hoppe, D.;

Hense, T.Angew. Chem., Int. Ed. Engll997 36, 2282-2316. (e)

Katritzky, A. R.; Qi, M. Tetrahedron1998 54, 2647-2668. Also see:

(f) Gawley, R. E.Curr. Org. Chem.1997, 1, 71-94.

(5) (a) Dombrowski, G. W.; Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.;

Gould, I. R.J. Org. Chem1999 64, 427-431. (b) Wayner, D. D. M,;

Clark K. B.; Rauk, A.; Yu, D.; Armstrong, D. Al. Am. Chem. S0d997,

119 8925-8393. (c) Lalevee, J.; Allonas, X.; Fouassier, JJ-FAmM. Chem.

Soc.2002 124, 9613-9621. (d) Luo, Y.-RHandbook of Bond Dissocia-

tion Energies in Organic CompoundSRC Press: Boca Raton, FL, 2003.

Reviews: (a) Ollivier, C.; Renaud, Bhem Re. 2001, 101, 3415-3434.

(b) Yorimitsu, H.; Oshima, K. IrRadicals in Organic SynthesiRenaud,

P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, Germany, 2001; Vol. 1,

pp 11-27. (c) O'Mahony, G Synlett2004 572-573. (d) Yoshimitsu, T.

In Electronic Encyclopedia of Reagents for Organic Synthé&&asjuette,

L. A., Fuchs, P. L., Wipf, P., Crich, D., Eds.; Wiley: New York, in press.

Reviews ofo-aminoalkyl radical chemistry: (a) Aurrecoechea, J. M.;

Suero, RARKIVOC2004 10-35. (b) Hart, D. InRadicals in Organic

Synthesis Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim,

Germany, 2001; Vol. 2, pp 27B02. (c) Renaud, P.; Giraud, Bynthesis

1996 913-926.

Recent instances of metal-mediatedmino s C—H functionalization:

(a) Sesen, B.; Sames, D. Am. Chem. So005 127, 5284-5285. (b)

Li, Z.; Li, C.-J.J. Am. Chem. So@005 127, 3672-3673. (c) Murahashi,

S.-i.; Komiya, N.; Terai, H.; Nakae, TJ. Am. Chem. SoQ003 125

15312-15313. (d) Davies, H. M. L.; Venkataramani, 8ngew. Chem.,

Int. Ed. 2002 41, 2197-2199. (e) Chatani, N.; Asaumi, T.; Yorimitsu,

S.; Ikeda, T.; Kakiuchi, F.; Murai, S. Am. Chem. So2001, 123 10935~

10941.

The hydroxyalkylation of 1-methylpiperidine provided alkylation products

in ca. 60% vyield (dr 58:42; regioisomeric ratio ca. 5.5:1). Further studies

on the substrate scope will be reported in due course.

The coordination of BB with aldehyde in path b remains a matter of

speculation. However, the formation of 4-methoxybenzyl alcohol from

4-methoxybenzaldehyde in some cases under thB/&t conditions
possibly indicates the intermediacy of the “ate” complex ofBEwith
aldehyde that is capable gfhydride transfer. Studies aimed at elucidating
the details are ongoing.
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